Drosophila peripodial cells, more than meets the eye?
نویسندگان
چکیده
Drosophila imaginal discs (appendage primordia) have proved invaluable for deciphering cellular and molecular mechanisms of animal development. By combining the accessibility of the discs with the genetic tractability of the fruit fly, researchers have discovered key mechanisms of growth control, pattern formation and long-range signaling. One of the principal experimental attractions of discs is their anatomical simplicity - they have long been considered to be cellular monolayers. During larval stages, however, the growing discs are 2-sided sacs composed of a columnar epithelium on one side and a squamous 'peripodial' epithelium on the other. Recent studies suggest important roles for peripodial epithelia in processes previously assumed to be confined to columnar cell monolayers.
منابع مشابه
Peripodial Cells Regulate Proliferation and Patterning of Drosophila Imaginal Discs
Cells employ a diverse array of signaling mechanisms to establish spatial patterns during development. Nowhere is this better understood than in Drosophila, where the limbs and eyes arise from discrete epithelial sacs called imaginal discs. Molecular-genetic analyses of pattern formation have generally treated discs as single epithelial sheets. Anatomically, however, discs comprise a columnar c...
متن کاملNovel Signaling from the Peripodial Membrane Is Essential for Eye Disc Patterning in Drosophila
The Drosophila eye disc is a sac of single layer epithelium with two opposing sides, the peripodial membrane (PM) and the disc proper (DP). Retinal morphogenesis is organized by Notch signaling at the dorsoventral (DV) boundary in the DP. Functions of the PM in coordinating growth and patterning of the DP are unknown. We show that the secreted proteins, Hedgehog, Wingless, and Decapentaplegic, ...
متن کاملDevelopmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs.
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling m...
متن کاملDual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.
The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutat...
متن کاملLumenal transmission of decapentaplegic in Drosophila imaginal discs.
Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioEssays : news and reviews in molecular, cellular and developmental biology
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2001